
Evaluate Efficiency of different scheduling
algorithms using FreeRTOS

Lihao Guo
Electrical & Computer Engineering

University of Arizona
leolihao@email.arizona.edu

Zhaohui Yang
Electrical & Computer Engineering

University of Arizona
zhy@email.arizona.edu

Zhuangzhuang Chen
Electrical & Computer Engineering

University of Arizona
zhuangzhuangchen@email.arizona.edu

Del Ellis Spangler
Electrical & Computer Engineering

University of Arizona
dspangler@email.arizona.edu

Kyle Boyer
Electrical & Computer Engineering

University of Arizona
kairu@email.arizona.edu

Abstract—We compared two scheduling algorithms, EDF and
DMS, running on FreeRTOS using a third-party scheduling
library for this project. We tested 150 task sets across 30
different scenarios consisting of various combinations of total
utilization and the number of periodic tasks. We found that DMS
consistently outperformed EDF on Average Response Time and
the number of runs completed with no late tasks across a broad
range of utilization values and missed deadlines by a narrower
margin in most other cases.

Index Terms—scheduling algorithms, FreeRTOS, EDF, DMS

I. INTRODUCTION

There are two types of scheduling modes applied in embed-
ded systems: static scheduling and dynamic scheduling [1].
Static scheduling determines priority and timing in advance,
and dynamic scheduling determines priority at execution time.
For applications where the tasks are to be executed depending
on conditions at runtime, dynamic scheduling can provide a
more efficient solution, as it does not require prior knowledge
of the actual workload.

Given any particular hardware, the capacity to perform tasks
within their deadlines depends on the characteristics of the
tasks themselves and the scheduling algorithm. Therefore,
exploring dynamic scheduling algorithms that can take full
advantage of hardware performance with acceptable computa-
tional overhead is a necessity [2].

This project aims to take two scheduling methods, EDF and
DMS, which claim to be optimal solutions and compare their
performance under various load conditions. The motivation is
to look at the effect of task delay and determine how much
the choice of algorithm matters. As the structure of the rest
paper will follow: Section II describes the basic concept of
EDF and DMS. Then Section III describes our experimental
setup. The next section is the result of our experiments and
an analysis of the results. The final part is the conclusion and
the future work.

In order to test other algorithms without modifying the
kernel, we are using a library called ESFree [3] that provides
user-land support for task scheduling. While this is less

efficient than implementing the algorithms in the kernel, this
solution requires much less development time and less in-depth
knowledge of the kernel. In addition, eliminating the need to
modify the kernel allows this to be used on any platform with
FreeRTOS support without further modification.

II. BACKGROUND

A. Deadline Monotonic Scheduling (DMS)

Deadline-Monotonic Scheduling (DMS) is an optimal fixed-
priority scheduling algorithm [4], meaning that priorities are
designated for each task based on their relative deadlines.
Tasks with shorter deadlines are assigned a higher priority.
DMS is one kind of preemptive scheduling algorithm - once
a new task comes, a running task might be preempted if the
new task’s deadline is near than it. DMS is widely applied
on the single-core processor in which deadline periods of
tasks are not equal to (usually shorter than) the period of
tasks [3]. Although its simplification, DMS does demonstrate
robust effectiveness. For example, Ref. shows that if the CPU
utilization is less than 69%, DMS gives the highest priority
to the periodic task with the shortest deadline and guarantees
the schedulability of tasks [5].

B. Earliest Deadline First (EDF)

Earliest Deadline First (EDF) is an optimal dynamic priority
scheduling policy if the CPU utilization is less than 100%,
which gives the highest priority to the tasks with the earliest
deadline [6]. It is a dynamic priority scheduling algorithm,
usually implemented by a priority queue, i.e., heap structure.
From head to tail of the priority queue, deadlines of tasks
are farther from the current moment. Thus the processor only
needs to process the head task in each context switch. The
most calculation overhead lies in maintaining the priority
queue all the time.

C. Efficient Earliest Deadline First (Efficient EDF)

In the ESFree library, an efficient-version EDF algorithm is
implemented [7]. The efficient EDF module is notified when

tasks are ready, blocked, or suspended, which has two prior-
ities for tasks: running a priority and not running a priority.
All tasks start with not running as a priority, and switched in
that task with the earliest absolute deadline in the ready or
running state has run a priority in the following situation: 1)
a task becomes blocked; 2) a task suspends itself; 3) a task
becomes ready when no other tasks running; 4) a task with
an earlier absolute deadline that current task becomes ready.
It reduces the calculation overhead by specifically considering
individual tasks and the individual statuses of tasks.

D. Related Work

A. Toma. et al. performed an experiment that compared the
performance of multiple scheduling algorithms and found that
the algorithms predicted to produce the best performance did
not always do so under real-world conditions [8]. S. Senviel.
et al. implemented an improved version of EDF, which seeks
to skirt some of the limitations of the original algorithm [9].

FreeRTOS is well suited to deeply embedded real-time
systems implemented in architectures equipped with micro-
controllers, which generally support tasks with real-time re-
quirements. Unfortunately, FreeRTOS does not have native
support for EDF or DMS. Instead, it uses Fixed-Priority-
Scheduling (FPS), configured to offer round-robin scheduling
per priority level. In addition, FreeRTOS normally handles
scheduling in the real-time kernel, and much of the code
is responsible for implementing that written functionality in
assembly [10].

K. ROBIN. et al. indicated that they had used Digilent Zed-
Board(ARM Cortex-A9), Digilent Nexys 4 DDR(Xilinx Mi-
croBlaze), and STMicroelectronics STM32 Nucleo-F401RE
(ARM Cortex-M4F) to evaluate the performance of the algo-
rithms through ESFree [3]. They mentioned that the ESFree
measured average context switch overhead in two test cases,
one with ten periodic tasks and the other with 30 periodic
ones. They found that the worst-case context switch time for
FreeRTOS and ESFree is when a higher priority task has
finished its function and the CPU time goes to a lower priority
task. In that scenario, the context switch overhead of fixed-
priority scheduling policies such as RMS and DMS in ESFree
exceed the overhead of native FreeRTOS by only 2-8%.

The documentation for ESFree also notes that in certain
cases, it may be preferable to use the default FPS algorithm
over a theoretically faster one to avoid the overhead of per-
forming scheduling outside the kernel. Since we will only be
comparing schedulers available through ESFRee, this overhead
should not affect the experiment’s outcome.

III. EXPERIMENTAL SETUP

Our setup consists of FreeRTOS running on a POSIX
environment, with ESFree providing access to EDF and DMS
user-land implementations. This stack then runs tasks designed
to do a particular number of ticks worth of work. The param-
eters for the tasks, including utilization, period, and worst-
case execution time, are generated programmatically from the
scenario description.

To generate each task set, we used an algorithm called
UUniFast, which takes a desired total utilization and several
tasks and returns a set of uniformly distributed utilization
values that sum to the specified total. The principle of the
algorithm is to sample the sum of the utilization value of
n−1 tasks first and then set the utilization value of tasks to the
difference between the total utilization value and the sampling
value. We selected task periods from a gaussian distribution
centered on 500 ticks. Moreover, we specifically decided on
500 to reduce the number of very small duration tasks, thus
reducing the effect of measurement overhead on the results.

To complete our experiment, we designed to run each task
with 10000 ticks, and we tracked the average response time,
the total number of tasks executed, maximum lateness, and the
number of late tasks for each run. Each run lasted 10000 ticks.
For each run, we tracked the average. If the number of late
tasks is zero, the application does not miss the task; otherwise,
it misses the task number.

After we obtain all results from the experiment, we could
calculate the success ratio by following the formula:

Success Ratio =
task sets with no missed deadline

generated task sets

We ran each algorithm 150 times. We tested them each
at 6 different utilization values ranging from 0.75 to 1, in
increments of 0.05. We tested 5 different numbers of tasks for
each utilization value, ranging from 5 to 25 in increments of
5. Each combination of utilization and task count ran 5 times
to compensate for the randomness in our task generation.

IV. RESULTS & ANALYSIS

Table I is our result from the experiment. The first column is
the utilization value, the second column is the number of tasks,
and the third column is the success ratio. We can see that even
at lower utilization (below 0.8), both algorithms occasionally
had late tasks, which were not schedulable. For EDF, when
utilization increases, the success ratio gradually decreases
demonstratively. For DMS, when utilization increases, the
success ratio does not significantly decrease.

TABLE I
SUCCESS RATIO VS. UTILIZATION FOR DMS AND EDF

Scheduler Utilization Success Ratio

DMS 0.75 0.992
0.80 0.992
0.85 0.993
0.90 0.990
0.95 0.990
1.00 0.988

EDF 0.75 0.991
0.80 0.988
0.85 0.986
0.90 0.983
0.95 0.984
1.00 0.983

Table II shows the success ratio as a function of the
number of tasks has run. For DMS, when the number of tasks

increases, the success ratio increases. For EDF, when number
task increases, the success ratio increases significantly.

TABLE II
SUCCESS RATIO VS. NUMBER OF TASKS FOR DMS AND EDF

Scheduler # of Tasks Success Ratio

DMS 5 0.987
10 0.990
15 0.991
20 0.993
25 0.993

EDF 5 0.979
10 0.986
15 0.985
20 0.988
25 0.991

As we compared those tables from the experimental result,
It is easy to find that DMS’s performance is better and more
robust. The DMS does not change when the number of tasks
or utilization changes.

Fig. 1. Average Response Time

Figure 1 shows that DMS also has a lower average response
time across all task sets in this experiment. We can see
that DMS is better not only in completed task rate but also
τ (utilization). As we can see, when the number of tasks
increases to 15, τ tends to be stable.

Figure 2 shows that DMS also has a lower average response
time across all task sets by the scheduler. In the DMS case,
τ is universally smaller than EDF, which coincides with the
conclusion aforementioned that DMS performs more stably on
utilization.

As can be seen in Figure 3, even when neither algorithm
can successfully meet all deadlines, DMS generally gets closer
than EDF in most cases.

Fig. 2. Average response time τ (by scheduler)

Fig. 3. Maximum Lateness

Figure 4 shows that in the case of DMS, r is universally
smaller than EDF, which coincides with the conclusion men-
tioned above that DMS performs more stably on utilization.

Figure 5 shows that the variance of max lateness is evidently
smaller in the EDF case than that for DMS, which indicates
that EDF is more stable although its overall max lateness is
larger DMS.

Fig. 4. Completed task rate r (by scheduler)

V. CONCLUSIONS & FUTURE WORK

We successfully tested EDF and DMS under various work-
load settings. We found that DMS evidently outperforms
every crucial metric we concentrated on, i.e., the average
response time, the scheduled tasks success ratio, the max
lateness time, and more. Particularly, DMS performs a more
stable scheduling effect other than universally better metric.
Compared with EDF, DMS is a simple static single-processor
scheduling algorithm and simpler when implemented; Thus,
it achieves more stable performance even when utilization
and the number of tasks change significantly. Our work
quantitatively illustrated specific differences between two rep-
resentative prototypes of the real-time scheduling algorithm,
hopefully guiding significance in designing practical real-time
embedded systems.

For future works, it would be interesting to perform this
test with a larger variety of algorithms and extend both the
range of utilization values tested to see how they perform
at very low utilization. Another potential improvement to
our implementation would be determining task periods from
domain-specific datasets rather than using a random variable
under the Gaussian distribution. Better yet, we hope to explore
whether there are derivative EDF models (e.g., Efficient EDF)
that can compensate for the disadvantages of the native EDF
and achieve the comparative performance of DMS.

Fig. 5. Max lateness r (by scheduler)

REFERENCES

[1] G. Oliveira and G. Lima, “Evaluation of scheduling algorithms for
embedded freertos-based systems,” in 2020 X Brazilian Symposium on
Computing Systems Engineering (SBESC), 2020, pp. 1–8.

[2] R. Belagali, S. Kulkarni, V. Hegde, and G. Mishra, “Implementation and
validation of dynamic scheduler based on lst on freertos,” pp. 325–330,
2016.

[3] R. KASE, “Efficient scheduling library for freertos -
diva-portal.org,” 2016. [Online]. Available: http://www.diva-
portal.org/smash/get/diva2:1085303/FULLTEXT01.pdf

[4] N. C. Audsley, A. Burns, M. Richardson, and A. Wellings, “Deadline
monotonic scheduling,” 1990.

[5] G. Buttazzo, “Hard real-time computing systems: predictable scheduling
algorithms and applications.”

[6] D. Faggioli, M. Trimarchi, F. Checconi, M. Bertogna, and A. Mancina,
“An implementation of the earliest deadline first algorithm in linux,” in
Proceedings of the 2009 ACM symposium on Applied Computing, 2009,
pp. 1984–1989.

[7] D. Thakor and A. Shah, “D edf: An efficient scheduling algorithm for
real-time multiprocessor system,” in 2011 World Congress on Informa-
tion and Communication Technologies. IEEE, 2011, pp. 1044–1049.

[8] V. M. Anas Toma and J.-J. Chen, “implementation and evaluation
of multi-mode real-time.” [Online]. Available: https://ls12-www.cs.tu-
dortmund.de/daes/media/documents/publications/
downloads/2018-toma-ospert.pdf

[9] Q. L.-S. Steve Senviel, “real-time scheduling for embedded
systems using enhanced edf,” in real-time scheduling for
embedded systems using enhanced edf, 2018. [Online]. Available:
https://www.cse.scu.edu/t̃wang1/studentProjects/Schedule embedded
RealTimeEDF 10s.pdf

[10] “Priority based preemptive RTOS scheduler.” [Online]. Available:
https://www.freertos.org/implementation/a00005.html

